Perbandingan Algoritma K-Means dan Fuzzy C-Means untuk Clustering Citra Daun Melon
نویسندگان
چکیده
Melon plants are that susceptible to disease, both diseases caused by viruses and those bacteria. One part of the plant can be affected disease is leaves. Leaves on diseased generally change color which will then affect other leaves inhibit development growth these plants. This study aims classify melon from leaf images. The data used in this 160 images grouped into several groups healthy group unhealthy group. method Clustering method, namely: K-Means algorithm Fuzzy C-Means algorithm. results using compared get best clustering results. comparison show with a validation value 0.8359 0.5793. final result shows better than because close 1.
منابع مشابه
Bilateral Weighted Fuzzy C-Means Clustering
Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملIntegrating Fuzzy C-Means Clustering Technique with K-Means Clustering Technique for CBIR
Image database sizes have increased enormously in the recent years due to the development of the technology which has developed the need for Content Based Image Retrieval (CBIR) system. In this study a CBIR system that allows searching and retrieves images from the databases is developed using the fuzzy c-means algorithm and K-means clustering, the system uses the low level features like color,...
متن کاملFuzzy C-Means Clustering With Regularization by K-L Information
Gaussian mixture model or Gaussian mixture density model(GMM) uses the likelihood function as a measure of fit. We show that just the same algorithm as the GMM can be derived from a modified objective function of Fuzzy c-Means (FCM) clustering with the regularizer by K-L information, only when the parameter λ equals 2. Although the fixed-point iteration scheme of FCM is similar to that of the G...
متن کاملتصحیح سیستم طبقهبندی امتیاز تودهسنگ با استفاده از الگوریتمهای خوشهبندی k-means و fuzzy c-means
با توجه به اهمیت و کاربرد سیستم طبقهبندی امتیاز تودهسنگ در مهندسی سنگ، هدف از این مقاله تصحیح کلاسهای نهایی این سیستم طبقهبندی با استفاده از الگوریتمهای خوشهبندی k-means و fuzzy c-means (FCM) است. در سیستم طبقهبندی امتیاز تودهسنگ دادهها توسط یک سری از اطلاعات اولیه بر مبنای نظریات و قضاوتهای تجربی طبقهبندی میشوند ولی با کاربرد الگوریتمهای خوشهبندی در این سیستم طبقهبندی، کلاس...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Building of Informatics, Technology and Science (BITS)
سال: 2022
ISSN: ['2684-8910', '2685-3310']
DOI: https://doi.org/10.47065/bits.v4i3.2534